A randomly generated sequence of relational events with 5 actors and 100 events. The event sequence is generated by following a tie-oriented modeling approach (for more information run on console help(topic = remulateTie, package = "remulate") or ?remulate::remulateTie).
Usage
data(tie_data)Format
tie_data is a list object containing the following objects:
edgelista
data.framewith the raw simulated edgelist. The columns of thedata.frameare:timethe timestamp indicating the time at which each event occurred
actor1the actor that generated the relational event
actor2the actor that received the relational event
seedthe seed value used in
remulate::remulateTie()for generating the event sequencetrue.parsa vector containing the values of the parameters used in the generation of the event sequence
Examples
# (1) load the data into the workspace
data(tie_data)
# (2) process event sequence with \code{remify}
tie_reh <- remify::remify(edgelist = tie_data$edgelist, model = "tie")
# (3) define linear predictor and claculate stastistcs with \code{remstats} package
## linear predictor
tie_model <- ~ 1 + remstats::indegreeSender() + remstats::inertia() + remstats::reciprocity()
## calculate statistics
tie_reh_stats <- remstats::remstats(reh = tie_reh, tie_effects = tie_model)
# (4) estimate model using method = "MLE" and print out summary
## estimate model
mle_tie <- remstimate::remstimate(reh = tie_reh, stats = tie_reh_stats, method = "MLE")
## print out a summary of the estimation
summary(mle_tie)
#> Relational Event Model (tie oriented)
#>
#> Call:
#> ~1 + remstats::indegreeSender() + remstats::inertia() + remstats::reciprocity()
#>
#>
#> Coefficients (MLE with interval likelihood):
#>
#> Estimate Std. Err z value Pr(>|z|) Pr(=0)
#> baseline -4.910454 0.187555 -26.181372 0.0000 <2e-16
#> indegreeSender 0.043490 0.036449 1.193170 0.2328 0.8307
#> inertia -0.201506 0.088154 -2.285831 0.0223 0.4231
#> reciprocity -0.052137 0.098237 -0.530728 0.5956 0.8968
#> Null deviance: 1216.739 on 100 degrees of freedom
#> Residual deviance: 1210.625 on 96 degrees of freedom
#> Chi-square: 6.11449 on 4 degrees of freedom, asymptotic p-value 0.1907597
#> AIC: 1218.625 AICC: 1219.046 BIC: 1229.045