A randomly generated sequence of relational events with 5 actors and 100 events. The event sequence is generated by following a tie-oriented modeling approach (for more information run on console help(topic = remulateTie, package = "remulate")
or ?remulate::remulateTie
).
Usage
data(tie_data)
Format
tie_data
is a list object containing the following objects:
edgelist
a
data.frame
with the raw simulated edgelist. The columns of thedata.frame
are:time
the timestamp indicating the time at which each event occurred
actor1
the actor that generated the relational event
actor2
the actor that received the relational event
seed
the seed value used in
remulate::remulateTie()
for generating the event sequencetrue.pars
a vector containing the values of the parameters used in the generation of the event sequence
Examples
# (1) load the data into the workspace
data(tie_data)
# (2) process event sequence with \code{remify}
tie_reh <- remify::remify(edgelist = tie_data$edgelist, model = "tie")
# (3) define linear predictor and claculate stastistcs with \code{remstats} package
## linear predictor
tie_model <- ~ 1 + remstats::indegreeSender() + remstats::inertia() + remstats::reciprocity()
## calculate statistics
tie_reh_stats <- remstats::remstats(reh = tie_reh, tie_effects = tie_model)
# (4) estimate model using method = "MLE" and print out summary
## estimate model
mle_tie <- remstimate::remstimate(reh = tie_reh, stats = tie_reh_stats, method = "MLE")
## print out a summary of the estimation
summary(mle_tie)
#> Relational Event Model (tie oriented)
#>
#> Call:
#> ~1 + remstats::indegreeSender() + remstats::inertia() + remstats::reciprocity()
#>
#>
#> Coefficients (MLE with interval likelihood):
#>
#> Estimate Std. Err z value Pr(>|z|) Pr(=0)
#> baseline -4.910454 0.187555 -26.181372 0.0000 <2e-16
#> indegreeSender 0.043490 0.036449 1.193170 0.2328 0.8307
#> inertia -0.201506 0.088154 -2.285831 0.0223 0.4231
#> reciprocity -0.052137 0.098237 -0.530728 0.5956 0.8968
#> Null deviance: 1216.739 on 100 degrees of freedom
#> Residual deviance: 1210.625 on 96 degrees of freedom
#> Chi-square: 6.11449 on 4 degrees of freedom, asymptotic p-value 0.1907597
#> AIC: 1218.625 AICC: 1219.046 BIC: 1229.045