A function that returns the summary of a remstimate
object.
Usage
# S3 method for remstimate
summary(object, ...)
Arguments
- object
is a
remstimate
object.- ...
further arguments to be passed to the 'summary' method.
Value
no return value. Prints out the summary of a 'remstimate' object. The output can be save in a list, which contains the information printed out by the summary method.
Examples
# ------------------------------------ #
# method 'summary' for the #
# tie-oriented model: "BSIR" #
# ------------------------------------ #
# loading data
data(tie_data)
# processing event sequence with remify
tie_reh <- remify::remify(edgelist = tie_data$edgelist, model = "tie")
# specifying linear predictor
tie_model <- ~ 1 +
remstats::indegreeSender()+
remstats::inertia()+
remstats::reciprocity()
# calculating statistics
tie_reh_stats <- remstats::remstats(reh = tie_reh,
tie_effects = tie_model)
# running estimation
tie_mle <- remstimate::remstimate(reh = tie_reh,
stats = tie_reh_stats,
method = "BSIR",
nsim = 100,
ncores = 1)
# summary
summary(tie_mle)
#> Relational Event Model (tie oriented)
#>
#> Call:
#> ~1 + remstats::indegreeSender() + remstats::inertia() + remstats::reciprocity()
#>
#>
#> Posterior Modes (BSIR with interval likelihood):
#>
#> Post.Mode Post.SD Q2.5% Q50% Q97.5% Pr(=0|x)
#> baseline -4.897778 0.183923 -5.316886 -4.936618 -4.5706 <2e-16
#> indegreeSender 0.052239 0.033067 -0.018439 0.049102 0.1094 0.7417
#> inertia -0.209489 0.081257 -0.369031 -0.222512 -0.0413 0.2649
#> reciprocity -0.065317 0.096046 -0.227090 -0.059380 0.1212 0.8881
#> Log posterior: -605.4761
# ------------------------------------ #
# method 'summary' for the #
# actor-oriented model: "BSIR" #
# ------------------------------------ #
# loading data
data(ao_data)
# processing event sequence with remify
ao_reh <- remify::remify(edgelist = ao_data$edgelist, model = "actor")
# specifying linear predictor (for sender rate and receiver choice model)
rate_model <- ~ 1 + remstats::indegreeSender()
choice_model <- ~ remstats::inertia() + remstats::reciprocity()
# calculating statistics
ao_reh_stats <- remstats::remstats(reh = ao_reh,
sender_effects = rate_model,
receiver_effects = choice_model)
# running estimation
ao_mle <- remstimate::remstimate(reh = ao_reh,
stats = ao_reh_stats,
method = "BSIR",
nsim = 100,
ncores = 1)
# summary
summary(ao_mle)
#> Relational Event Model (actor oriented)
#>
#> Call rate model **for sender**:
#>
#> ~1 + remstats::indegreeSender()
#>
#>
#> Posterior Modes rate model (BSIR with interval likelihood):
#>
#> Post.Mode Post.SD Q2.5% Q50% Q97.5% Pr(=0|x)
#> baseline -4.8033053 0.1810062 -5.1223591 -4.7889548 -4.4948 <2e-16
#> indegreeSender -0.0088236 0.0148676 -0.0426069 -0.0075654 0.0181 0.8934
#> Log posterior: -588.6746
#> --------------------------------------------------------------------------------
#>
#> Call choice model **for receiver**:
#>
#> ~remstats::inertia() + remstats::reciprocity()
#>
#>
#> Posterior Modes choice model (BSIR with interval likelihood):
#>
#> Post.Mode Post.SD Q2.5% Q50% Q97.5% Pr(=0|x)
#> inertia -0.033359 0.074446 -0.191048 -0.039993 0.1168 0.9004
#> reciprocity 0.028577 0.071405 -0.102392 0.031216 0.1512 0.9023
#> Log posterior: -138.5382
# ------------------------------------ #
# for more examples check vignettes #
# ------------------------------------ #