A function that returns the summary of a remstimate
object.
Usage
# S3 method for class 'remstimate'
summary(object, ...)
Value
no return value. Prints out the summary of a 'remstimate' object. The output can be save in a list, which contains the information printed out by the summary method.
Examples
# ------------------------------------ #
# method 'summary' for the #
# tie-oriented model: "BSIR" #
# ------------------------------------ #
# loading data
data(tie_data)
# processing event sequence with remify
tie_reh <- remify::remify(edgelist = tie_data$edgelist, model = "tie")
# specifying linear predictor
tie_model <- ~ 1 +
remstats::indegreeSender()+
remstats::inertia()+
remstats::reciprocity()
# calculating statistics
tie_reh_stats <- remstats::remstats(reh = tie_reh,
tie_effects = tie_model)
# running estimation
tie_mle <- remstimate::remstimate(reh = tie_reh,
stats = tie_reh_stats,
method = "BSIR",
nsim = 100,
ncores = 1)
# summary
summary(tie_mle)
#> Relational Event Model (tie oriented)
#>
#> Call:
#> ~1 + remstats::indegreeSender() + remstats::inertia() + remstats::reciprocity()
#>
#>
#> Posterior Modes (BSIR with interval likelihood):
#>
#> Post.Mode Post.SD Q2.5% Q50% Q97.5% Pr(=0|x)
#> baseline -4.930686 0.191566 -5.238398 -4.902682 -4.5320 <2e-16
#> indegreeSender 0.041427 0.034736 -0.021272 0.042923 0.1008 0.8308
#> inertia -0.178813 0.086037 -0.355964 -0.213985 -0.0183 0.5357
#> reciprocity -0.052704 0.097314 -0.246713 -0.054526 0.1148 0.8962
#> Log posterior: -605.362
# ------------------------------------ #
# method 'summary' for the #
# actor-oriented model: "BSIR" #
# ------------------------------------ #
# loading data
data(ao_data)
# processing event sequence with remify
ao_reh <- remify::remify(edgelist = ao_data$edgelist, model = "actor")
# specifying linear predictor (for sender rate and receiver choice model)
rate_model <- ~ 1 + remstats::indegreeSender()
choice_model <- ~ remstats::inertia() + remstats::reciprocity()
# calculating statistics
ao_reh_stats <- remstats::remstats(reh = ao_reh,
sender_effects = rate_model,
receiver_effects = choice_model)
# running estimation
ao_mle <- remstimate::remstimate(reh = ao_reh,
stats = ao_reh_stats,
method = "BSIR",
nsim = 100,
ncores = 1)
# summary
summary(ao_mle)
#> Relational Event Model (actor oriented)
#>
#> Call rate model **for sender**:
#>
#> ~1 + remstats::indegreeSender()
#>
#>
#> Posterior Modes rate model (BSIR with interval likelihood):
#>
#> Post.Mode Post.SD Q2.5% Q50% Q97.5% Pr(=0|x)
#> baseline -4.8318079 0.1945285 -5.1762069 -4.8465518 -4.4549 <2e-16
#> indegreeSender -0.0062247 0.0158862 -0.0360303 -0.0057925 0.0195 0.9025
#> Log posterior: -588.6842
#> --------------------------------------------------------------------------------
#>
#> Call choice model **for receiver**:
#>
#> ~remstats::inertia() + remstats::reciprocity()
#>
#>
#> Posterior Modes choice model (BSIR with interval likelihood):
#>
#> Post.Mode Post.SD Q2.5% Q50% Q97.5% Pr(=0|x)
#> inertia -0.038097 0.082237 -0.174712 -0.038860 0.1146 0.8998
#> reciprocity 0.011089 0.069394 -0.130471 0.021295 0.1441 0.9080
#> Log posterior: -138.5375
# ------------------------------------ #
# for more examples check vignettes #
# ------------------------------------ #